## STRENGTH OF MATERIALS

DEC. 2018

## Q. 1

a. A bar of $\mathbf{2 0} \mathbf{~ m m}$ diameter is subjected to a pull of 50 KN . The measured extension over a gauge length of 20 cm is 0.1 mm and the change in diameter is 0.0035 mm calculate the Poisson's ratio and modulus of elasticity.

Given: $d=20 \mathrm{~mm}$
$\mathrm{L}=20 \mathrm{~cm}=0.2 \mathrm{~m}=0.2 \times 10^{3} \mathrm{~mm}$
$\mathrm{P}=50 \mathrm{KN}=50 \times 10^{3} \mathrm{~N}$
$\mu=\left(\frac{\delta \mathrm{d} / d}{\delta l / l}\right)=\frac{0.0035 / 20}{0.1 / 0.2 \times 10^{3}}=0.35$
$\delta \mathrm{L}=\frac{P L}{A E}$
$\mathrm{E}=\frac{P L}{A \delta L}=\frac{50 \times 10^{3} \times 0.2 \times 10^{3}}{(\pi / 4) \times(20)^{2} \times 0.1}=318.31 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
b. A short column $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ is subjected to an eccentric load of 60 KN at an eccentricity of 40 mm in the plane bisecting the 100 mm side find maximum intensities of stresses at the base.

Given: $b=200 \mathrm{~mm} \quad d=100 \mathrm{~mm}$

$$
\begin{aligned}
& P=60 \mathrm{KN}=60 \times 10^{3} \mathrm{~N} \\
& e=40 \mathrm{~mm}
\end{aligned}
$$

Direct stress,

$$
\sigma_{0}=\frac{P}{A}=\frac{P}{b \times d}=\frac{60 \times 10^{3}}{200 \times 100}=3 \mathrm{~N} / \mathrm{mm}^{2}
$$

Bending stress,

$$
\begin{gathered}
\sigma_{b}=\frac{M}{I_{y y}}=\frac{60 \times 10^{3} \times 40}{\frac{100 \times(200)^{2}}{6}}=3.6 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{\max }=\sigma_{0}+\sigma_{\mathrm{b}}=3+3.6=6.6 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C}) \\
\sigma_{\min }=\sigma_{0}-\sigma_{\mathrm{b}}=3-3.6=-0.6 \mathrm{~N} / \mathrm{mm}^{2}=0.6 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T})
\end{gathered}
$$


c. A M.S. plate is 400 mm long 200 mm wide and 50 mm thick is subjected to gradually tensile load 1200 KN , calculate : (i) proof resilience, (ii) modulus of resilience. Take E= $200 \times 10^{3} \mathrm{MPa}$.

Given: $\mathrm{L}=400 \mathrm{~mm}$
$\mathrm{b}=200 \mathrm{~mm}$
$\mathrm{t}=50 \mathrm{~mm}$
$P=1200 \mathrm{KN}=1200 \times 10^{3} \mathrm{~N}$

$$
\mathrm{E}=200 \times 10^{3} \mathrm{MPa}
$$

For gradually increasing load,

$$
\begin{aligned}
\sigma= & \frac{P}{A}=\frac{P}{b \times t}=\frac{1200 \times 10^{3}}{200 \times 50}=120 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{U}_{\max } & =\frac{\sigma^{2}}{2 E} \times A L=\frac{\sigma^{2}}{2 E} \times b . t \times L=\frac{(120)^{2}}{2 \times 200 \times 10^{3}} \times 200 \times 50 \times 400 \\
& =144 \times 10^{3} \mathrm{Nmm}
\end{aligned}
$$

$$
\text { Modulus of Resilence }=\frac{\sigma^{2}}{2 E}=\frac{(120)^{2}}{2 \times 200 \times 10^{3}}=0.036 \mathrm{~N} / \mathrm{mm}^{2}
$$

d. State torsion formula explain meaning of each term. Also state assumptions made in theory of torsion.

Torsional Formula:

$$
\frac{T}{J}=\frac{G \cdot \theta}{L}=\frac{\tau}{R}
$$

Where,
$\mathrm{T}=$ Twisting moment
$\mathrm{G}=$ Modulus of rigidity
$\mathrm{J}=$ Polar moment of Inertia
L= Length of shaft
$\theta=$ Angle of twist
$\tau=$ Shear Stress
$\mathrm{R}=$ Radius of shaft

Assumptions made in theory of torsion:
i> Material of the shaft is homogenous and isotropic.
ii> The shaft is perfectly straight and uniform in cross-section.
iii> Circular shaft remains circular after twisting.
iv> Plane shaft of shaft remains plane before and after twisting.
v> Twist is uniform along the length of shaft.
e. A cantilever beam 4 m span carrying udl of $5 \mathrm{KN} / \mathrm{m}$ and permissible bending stress in the material of beam is $15 \mathrm{~N} / \mathrm{mm}^{2}$. Design the section of beam if depth to width ratio is 2 . [5]

Given: $\mathrm{L}=4 \mathrm{~m}$
$\mathrm{w}=5 \mathrm{kN} / \mathrm{m}$
i.e $b=0.5 d$
$\mathrm{M}=\frac{w L^{2}}{8}=\frac{5 \times(4)^{2}}{8}=10 \mathrm{kNm}$
$\mathrm{I}=\frac{b . d^{2}}{12}=\frac{0.5 d \times d^{3}}{12}=\frac{d^{4}}{24}$
$\frac{M}{I}=\frac{\sigma_{b}}{y}$
$\frac{10 \times 10^{6}}{\left(d^{4} / 24\right)}=\frac{15}{(d / 2)}$
d $=200 \mathrm{~mm}$
$b=0.5 d=0.5 \times 200=100 \mathrm{~mm}$

$$
\sigma_{b}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$


f. State assumptions made in theory of bending also state bending formula.
[5]
Assumptions made in theory of bending:
i> The material of beam is homogenous and isotropic.
ii> The beam is straight before loading.
iii> The beam is of uniform cross-section throughout its length.
iv> Transverse sections which are plane before loading remain plane even after loading.
v> Modulus of elasticity has some value in tension and compression.
Bending Formula $=\frac{\sigma_{b}}{y}=\frac{M}{I}=\frac{E}{R}$
Where,
$\sigma_{b}=$ Bending stress
$y=$ Distance of outer fibre from bending axis
$M=$ Moment of resistance
I= Moment of inertia
$E=$ Young's modulus of elasticity
$\mathrm{R}=$ Radius of curvature

## Q. 2

a. A wagon weighing 35 KN is attached to a wire rope and moving down an incline plane at speed of 3.6 kmph . When the rope jams and wagon is suddenly brought to rest. If the

ENGINEERING
length of rope is 60 m at the time sudden stoppage. Calculate the maximum instantaneous elongation produced diameter of rope is 40 mm take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ [10]

Given: $W=35 \mathrm{KN}=35 \times 10^{3} \mathrm{~N}$

$$
\mathrm{L}=60 \mathrm{~m}=60 \times 10^{3} \mathrm{~mm}
$$

$$
\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
$$

Kinetic energy of wagon $=\frac{1}{2} \times \mathrm{mv}^{2}=\frac{1}{2} \times \frac{35 \times 10^{3}}{9.81} \times(1)^{2}$
As the chain gets jammed, K.E of wagon is transformed into strain energy of rope
$\mathrm{U}=\frac{\sigma^{2}}{2 E} \times A L=\frac{\sigma^{2}}{2 \times 2.1 \times 10^{5}} \times \frac{\pi}{4} \times(40)^{2} \times 60 \times 10^{3}=179.52 \sigma^{2}$
Now, $\quad$ K.E = U

$$
\begin{aligned}
& 1783.9 \times 10^{3}=179.52 \sigma^{2} \\
& \sigma=99.68 \mathrm{~N} / \mathrm{mm}^{2} \\
& \delta \mathrm{~L}=\frac{\sigma . L}{E}=\frac{99.68 \times 60 \times 10^{3}}{2.1 \times 10^{5}}=28.48 \mathrm{~mm}
\end{aligned}
$$

b. A compound tube consists of a steel tube of 140 mm ID and 16 mm OD and an outer brass tube of 160 mm ID and 180 mm OD. Both the tube are 1.5 m in length. If the compound tube carries an axial compressive load of 900 KN find its reduction in length also find stresses and the load carries by each tube. $E_{s}=200 \mathrm{GN} / \mathrm{m}^{2} \quad E_{b}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \quad[10]$

Given: $D_{s}=160 \mathrm{~mm}, d_{s}=140 \mathrm{~mm}$

$$
\begin{gathered}
\mathrm{D}_{\mathrm{b}}=180 \mathrm{~mm}, \mathrm{~d}_{\mathrm{b}}=160 \mathrm{~mm} \\
\mathrm{~L}=1.5 \mathrm{~m}=1.5 \times 10^{3} \mathrm{~mm} \\
\mathrm{P}=900 \mathrm{KN}=900 \times 10^{3} \mathrm{~N} \\
\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{E}_{\mathrm{b}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{~A}_{\mathrm{b}}=\frac{\pi}{4}\left[\mathrm{D}_{\mathrm{b}}^{2}-\mathrm{d}_{\mathrm{b}}^{2}\right]=\frac{\pi}{4}\left[180^{2}-160^{2}\right]=5340.71 \mathrm{~mm} \\
\mathrm{~A}_{\mathrm{s}}=\frac{\pi}{4}\left[\mathrm{D}_{\mathrm{s}}^{2}-\mathrm{d}_{\mathrm{s}}^{2}\right]=\frac{\pi}{4}\left[160^{2}-140^{2}\right]=4712.4 \mathrm{~mm}^{2}
\end{gathered}
$$



Now,

$$
\frac{\sigma_{s}}{E_{s}}=\frac{\sigma_{b}}{E_{b}}
$$

$$
\begin{gathered}
\frac{\sigma_{s}}{2 \times 10^{2}}=\frac{\sigma_{b}}{1 \times 10^{2}} \\
\sigma_{s}=2 \sigma_{b}
\end{gathered}
$$

Also,

$$
\mathrm{P}=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{b}}=\sigma_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s}}+\sigma_{\mathrm{b}} \cdot \mathrm{~A}_{b}=2 . \sigma_{b} \mathrm{X} 4712.4+\sigma_{b} \mathrm{X} 5340.71
$$

$$
\begin{gathered}
900 \times 10^{3}=14765.5 \sigma_{\mathrm{b}} \\
\sigma_{\mathrm{b}}=60.95 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{\mathrm{s}}=2 . \sigma_{\mathrm{b}}=2 \times 60.95=121.91 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{P}_{\mathrm{s}}=\sigma_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s}}=121.91 \times 4712.4=574.5 \times 10^{3} \mathrm{~N} \\
\mathrm{P}_{\mathrm{b}}=\mathrm{P}-\mathrm{P}_{\mathrm{s}}=900-574.5=325.5 \mathrm{kN} \\
\sigma_{l}=\frac{\sigma_{s} \cdot L_{s}}{E_{S}}=\frac{121.91 \times 1500}{2 \times 10^{5}}=0.941 \mathrm{~mm}
\end{gathered}
$$

## Q. 3

a. At a certain point in a strained material, $\sigma_{x}=100 \mathrm{MPa}(\mathrm{T}), \sigma_{y}=40 \mathrm{MPa}(\mathrm{C})$, and shear stress $\tau=30 \mathrm{MPa}$. Locate the principle planes and evaluate the principal stresses. Also find the maximum shear stress and the plane carrying it. Use Mohr's circle method.

Given: $\sigma_{x}=100 \mathrm{MPa}$ (tensile)

$$
\tau=30 \mathrm{MPa}
$$



$$
\sigma_{\mathrm{y}}=40 \mathrm{MPa} \text { (compressive) }
$$



Step 1: Select scale $1 \mathrm{~cm}=10 \mathrm{MPa}$. Select origin $O$, take $\sigma_{x}=10 \mathrm{~cm}$ as $O P$ and $\sigma_{y}=4 \mathrm{~cm}$ as $O D$.
Step 2: Draw perpendicular at point $\mathrm{P} \& \mathrm{Q}$ such that $\mathrm{PR}=\mathrm{QS}=\tau=3 \mathrm{~cm}$
Step 3: Join the point S \& R, line SR cuts the horizontal axis at a point, mark it as C.
Step 4: Now C is a centre and take CR as a radius, draw a circle cutting horizontal axis at A \& B.

Step 5: Measure OA \& OB, which are major and minor principal stresses.

## Principal stresses:

$\therefore$ Major Principal stresses, $\sigma_{n 1}=d(O A) X$ Scale $=10.6 X 10=106 \mathrm{~N} / \mathrm{mm}^{2}$

Major Principal stresses, $\sigma_{\mathrm{n} 2}=\mathrm{d}(\mathrm{OB}) \times$ Scale $=4.6 \mathrm{X} 10=46 \mathrm{~N} / \mathrm{mm}^{2}$
Angle $\angle P C P$ represents two see of location of principal plane ' $\theta$ '

$$
\begin{gathered}
2 \theta=\angle P C R=23^{\circ} \quad \therefore \theta_{1}=11.5^{\circ} \\
\theta_{2}=\theta_{1}+90^{\circ}=101.5^{\circ}
\end{gathered}
$$

Draw a perpendicular on horizontal axis at a centre (CD),
Maximum shear stress $=d(C D) X$ Scale

$$
\tau_{\max }=7.5 \times 10=75 \mathrm{~N} / \mathrm{mm}^{2}
$$

b. Draw SF and BM diagram for beam shown with $B$ as internal hinge.

i> Considering FBD of beam BCDE,
$\therefore \Sigma F_{y}=0$
$\therefore R_{b}-20-50-20+R_{d}-20=0$
$\therefore \mathrm{R}_{\mathrm{b}}+\mathrm{R}_{\mathrm{d}}=110$
$\Sigma \mathrm{M}_{\mathrm{B}}=0$
$(20 \times 2.5)+\left(R_{d} \times 2\right)-(20 \times 1.5)-(50 \times 1)-(20 \times 0.5)=0$
$\mathrm{R}_{\mathrm{d}}=70 \mathrm{KN}$

From equation (1),
$\therefore \mathrm{R}_{\mathrm{b}}=40 \mathrm{KN}$
ii> Considering FBD of beam $A B$,
$\Sigma M_{A}=0$
$M_{A}-(40 \times 1)-(40 \times 2)=0$
$\mathrm{M}_{\mathrm{A}}=120 \mathrm{KNm}$
\& $\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\therefore-R_{b}-40+R_{a}=0$
$\mathrm{R}_{\mathrm{a}}=80 \mathrm{KN}$
iii> SF calculations:
$\mathrm{SF}_{\mathrm{E}}=0 \mathrm{KN}$
$S F_{D}=0+20-70=-50 \mathrm{KN}$
$S F_{C}=-50+20+50=20 \mathrm{KN}$
$S F_{B}=20+20=40 \mathrm{KN}$
$S F_{A}=40-40=0 \mathrm{KN}$
iv> BM Calculation:
$B M_{\mathrm{E}}=0 \mathrm{KNm}$
$B M_{D}=-(20 \times 0.5)=-10 \mathrm{KNm}$
$B M_{C}=-(20 \times 1.5)+(70 \times 1)-(20 \times 0.5)=30 \mathrm{KNm}$
$B M_{B}=0 \mathrm{KNm}$
$B M_{\text {RofA }}=-(20 \times 4.5)+(70 \times 4)-(20 \times 3.5)-(50 \times 3)-(20 \times 2.5)-(40 \times 1)=-120 \mathrm{KNm}$
$B M_{\text {Lof }}=-120+120=0 \mathrm{KNm}$

## Q. 4

a. A hollow shaft of diameter ratio $3 / 8\left(d_{i}\right.$ to $\left.d_{o}\right)$ is to transmit 375 KW power at 100 rpm , the maximum torque being $20 \%$ greater than the mean the shear stress is not to exceed than $60 \mathrm{~N} / \mathrm{mm}^{2}$ and twist in a length of 4 m not to exceed $2^{\circ}$, calculate it's external and internal diameter which would satisfy both the above condition take $G=0.85 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. [10]

Given: Hollow Shaft,
$\frac{d_{i}}{d_{o}}=\frac{3}{8}=0.375$
$\mathrm{P}=375 \mathrm{KW}=375 \times 10^{3} \mathrm{~W}$
$\mathrm{N}=100 \mathrm{r} . \mathrm{p} . \mathrm{m}$
$\mathrm{T}_{\text {max }}=1.2 \mathrm{~T}_{\text {mean }} \quad \tau=60 \mathrm{~N} / \mathrm{mm}^{2} \quad \mathrm{~L}=4 \mathrm{~m}=4 \times 10^{3} \mathrm{~mm}$
$\theta=2^{\circ}=0.0349 \mathrm{rad} \quad \mathrm{G}=0.85 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$P=\frac{2 \pi N T_{\text {mean }}}{60}$
$375 \times 10^{3}=\frac{2 \pi \times 100 \times T_{\text {mean }}}{60}$
$T_{\text {mean }}=35.81 \times 10^{3} \mathrm{Nm}$
$\mathrm{T}_{\text {max }}=1.2 \mathrm{~T}_{\text {mean }}=1.2 \times 35.81 \times 10^{3}=42.972 \times 10^{3} \mathrm{Nm}=42.972 \times 10^{6} \mathrm{Nmm}$

## Strength condition:

$\mathrm{T}_{\text {max }}=\frac{\pi}{16} \times\left(\frac{d_{0}{ }^{4}-d_{i}{ }^{4}}{d_{o}}\right) \times \tau$
$42.972 \times 10^{6}=\frac{\pi}{16} \times\left(\frac{d_{0}{ }^{4}-\left(0.375 d_{o}\right)^{4}}{d_{o}}\right) \times 60$
$42.972 \times 10^{6}=\frac{\pi}{16} \times 0.9802 . d_{0}{ }^{3} \times 60$
$\mathrm{d}_{\mathrm{o}}=154.96 \mathrm{~mm}$
$\mathrm{d}_{\mathrm{i}}=0.375 \mathrm{~d}_{\mathrm{o}}=0.375 \times 154.96=58.11 \mathrm{~mm}$

## Stiffness condition:

$$
\begin{aligned}
& \frac{G . \theta}{L}=\frac{T_{\max }}{J} \\
& \frac{0.85 \times 10^{5} \times 0.0349}{4 \times 10^{3}}=\frac{42.972 \times 10^{6}}{(\pi / 32) \times\left[d_{0}{ }^{4}-d_{i}{ }^{4}\right]} \\
& d_{0}{ }^{4}-\left(0.375 \mathrm{~d}_{\mathrm{o}}\right)^{4}=590.202 \times 10^{6} \\
& \mathrm{~d}_{\mathrm{o}}=156.65 \mathrm{~mm} \\
& \mathrm{~d}_{\mathrm{i}}=\mathbf{0 . 3 7 5} \mathrm{d}_{\mathrm{o}}=\mathbf{0 . 3 7 5} \times 156.65=58.74 \mathrm{~mm}
\end{aligned}
$$

b. A cylindrical shell 1 m in diameter and 3 m long has a thickness of 10 mm if it is subjected to an internal pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate change in length, change in diameter, change in volume. Take $E=210 \mathrm{KN} / \mathrm{mm}^{2}$ and $\mu=0.3$.

Given: Cylindrical shell,

$$
\begin{array}{ll}
\mathrm{d}=1 \mathrm{~m}=1000 \mathrm{~mm} & \mathrm{~L}=3 \mathrm{~m}=3000 \mathrm{~mm} \quad \mathrm{t}=10 \mathrm{~mm} \\
\mathrm{P}=3 \mathrm{~N} / \mathrm{mm}^{2} & \mathrm{E}=210 \mathrm{~N} / \mathrm{mm}^{2}=210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\
\mu=0.3 &
\end{array}
$$

Circumferential strain,

$$
\mathrm{e}_{\mathrm{h}}=\frac{p . d}{4 t E}(2-\mu)=\frac{3 \times 1000}{4 \times 10 \times 210 \times 10^{3}}(2-0.3)=6.0714 \times 10^{-4}
$$

Longitudinal strain,

$$
\mathrm{e}_{\mathrm{L}}=\frac{p \cdot d}{4 t E}(1-2 \mu)=\frac{3 \times 1000}{4 \times 10 \times 210 \times 10^{3}}(1-2 \times 0.3)=1.428 \times 10^{-4}
$$

Volumetric strain,

$$
\mathrm{e}_{\mathrm{v}}=\frac{p \cdot d}{4 t E}(5-4 \mu)=\frac{3 \times 1000}{4 \times 10 \times 210 \times 10^{3}}(5-4 \times 0.3)=1.3571 \times 10^{-3}
$$

Change in length,
$\delta L=\mathrm{e}_{\mathrm{L}} \mathrm{XL}=1.428 \times 10^{-4} \times 3000=0.4284 \mathrm{~mm}$
Change in diameter,
$\delta d=\mathrm{e}_{\mathrm{h}} \times \mathrm{d}=6.0714 \times 10^{-4} \times 1000=\mathbf{0 . 6 0 7 1} \mathbf{~ m m}$
Change in volume,

$$
\begin{aligned}
\delta V & =\mathrm{e}_{\mathrm{V}} \mathrm{XV}=\mathrm{e}_{\mathrm{v}} \times \frac{\pi}{4} d^{2} \times L \\
& =1.3571 \times 10^{-3} \times \frac{\pi}{4}(1000)^{2} \times 3000=3.1976 \times 10^{6} \mathrm{~mm}^{3}
\end{aligned}
$$

## Q. 5

a. Find the stresses in the wire of the system made of two copper wire and one steel wire of equal length and $65 \mathrm{~mm}^{2}$ cross sectional area the load of 18 KN is attached to it. The temperature of the system rises by $10^{\circ} \mathrm{C}$ assume $\alpha_{c}=16 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{c}}=110 \mathrm{KN} / \mathrm{mm}^{2}$

$$
\begin{equation*}
\alpha_{s}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}, E_{s}=210 \mathrm{KN} / \mathrm{mm}^{2} \tag{10}
\end{equation*}
$$

Given: $A_{S}=A_{C}=65 \mathrm{~mm}^{2}$

$$
P=18 \mathrm{KN}=18 \times 10^{3} \mathrm{~N}
$$

$$
\begin{aligned}
& \Delta t=10^{\circ} \mathrm{C} \\
& \alpha_{\mathrm{C}}=16 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& \alpha_{\mathrm{S}}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{C}}=110 \mathrm{KN} / \mathrm{mm}^{2}=110 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
E_{s}=210
$$

$\mathrm{KN} / \mathrm{mm}^{2}=210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$
Stresses due to load of 18 KN :
$\delta L_{s}=\delta L_{c}$
$\frac{\sigma_{s 1}}{E_{S}}=\frac{\sigma_{c 1}}{E_{C}} \quad\left[\because \mathrm{~L}_{s}=\mathrm{L}_{\mathrm{c}}\right]$
$\frac{\sigma_{s 1}}{210 \times 10^{3}}=\frac{\sigma_{c 1}}{110 \times 10^{3}}$
$\sigma_{s 1}=1.909 \sigma_{c 1}$


Also, $\quad \mathrm{P}=2 \mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{s}}$

$$
=2 \sigma_{c 1} \mathrm{~A}_{c}+\sigma_{s 1} \mathrm{~A}_{s}
$$

$18 \times 10^{3}=2 \sigma_{c 1} \times 65+1.909 \sigma_{c 1} \times 65$

$$
\begin{aligned}
& \sigma_{c 1}=70.84 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{s 1}=1.909 \times 70.84=135.24 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Stresses due to rise in temperature:
Since, $\alpha_{c}>\alpha_{s}$
Compression in copper $=$ Tension in steel
i.e. $2 \sigma_{c 2} \mathrm{~A}_{c}=\sigma_{s 2} \mathrm{~A}_{s}$

$$
2 \sigma_{c 2}=\sigma_{s 2}
$$

Now, $\frac{\sigma_{s 2}}{E_{S}}+\frac{\sigma_{c 2}}{E_{C}}=\left(\alpha_{c}-\alpha_{s}\right) \Delta \mathrm{t}$

$$
\begin{aligned}
& \frac{2 \sigma_{c 2}}{210 \times 10^{3}}+\frac{\sigma_{c 2}}{110 \times 10^{3}}=(16-12) \times 10^{-6} \times 10 \\
& \sigma_{c 2}=2.15 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{s 2}=2 \sigma_{c 2}=2 \times 2.15=4.3 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{s T}=\sigma_{s 1}+\sigma_{s 2}=135.24+4.3=139.54 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{c T}=\sigma_{c 1}+\sigma_{c 2}=70.84+2.15=\mathbf{7 2 . 9 9} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

b. Determine at B and slope supported

shown. Also find the max deflection and its location, take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{I}=300 \times 10^{8}$ $\mathrm{mm}^{4}$. [10]
$\mathrm{EI}=200 \times 10^{3} \times 300 \times 10^{8}=6 \times 10^{15} \mathrm{Nmm}^{2}=6 \times 10^{6} \mathrm{KNm}^{2}$
Now, $\Sigma f_{y}=0$

$$
\begin{aligned}
& R_{A}+10-8 \times 3-20+R_{D}=0 \\
& R_{A}+R_{D}=34 K N
\end{aligned}
$$

Also, $\quad \Sigma \mathrm{M}_{\mathrm{A}}=0$

$$
\begin{aligned}
& -10 \times 2+(8 \times 3) \times 5.5+20 \times 9-R_{D} \times 11=0 \\
& R_{D}=26.55 \mathrm{KN} \\
& R_{A}=7.45 \mathrm{KN}
\end{aligned}
$$

Applying Macaulay's method,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{xx}} & =\mathrm{EI} \cdot \frac{d^{2} y}{d n^{2}} \\
& =7.45 \mathrm{x}+10(\mathrm{x}-2)-8 \frac{(x-4)^{2}}{2}+8 \frac{(x-7)^{2}}{2}-20(\mathrm{x}-9)
\end{aligned}
$$

On Integrating,

$$
\text { EI. } \frac{d y}{d n}=7.45 \frac{x^{2}}{2}+\mathrm{c}_{1}+10 \frac{(x-2)^{2}}{2}-8 \frac{(x-4)^{3}}{6}+8 \frac{(x-7)^{3}}{6}-20 \frac{(x-9)^{2}}{2}
$$

Again, on integrating,

$$
\text { El.y }=7.45 \frac{x^{3}}{6}+c_{1} x+c_{2}+10 \frac{(x-2)^{3}}{6}-8 \frac{(x-4)^{4}}{24}+8 \frac{(x-7)^{4}}{24}-20 \frac{(x-9)^{3}}{6}
$$

Applying boundary conditions,
When $x=0, y=0$
$\mathrm{c}_{2}=0$ and when $\mathrm{x}=11, \mathrm{y}=0$
$0=\frac{7.45}{6}(11)^{3}+11 c_{1}+\frac{10}{6}(9)^{3}-\frac{8}{24}(7)^{4}+\frac{8}{24}(4)^{4}-\frac{20}{6}(2)^{3}$
$\mathrm{C}_{1}=-193.27$
Definition at B, i.e. at $\mathrm{x}=4 \mathrm{~m}$

$$
\text { El. } y_{b}=7.45 \times \frac{4^{3}}{6}-193.27(4)+\frac{10}{6}(2)^{3}
$$

$$
y_{b}=\frac{1}{6 \times 10^{6}} x-680.28=-1.134 \times 10^{-4} \mathrm{~m}=0.1134 \mathrm{~mm}
$$

Slope at D, i.e. at $x=11 \mathrm{~m}$

> EI. $\left(\frac{d y}{d x}\right)_{\mathrm{D}}=\frac{7.45}{3} \times(11)^{2}-193.27+\frac{10}{2}(9)^{2}-\frac{8}{6}(7)^{3}-\frac{8}{6}(4)^{3}-\frac{20}{2}(2)^{2}$ $\theta_{D}=\frac{1}{6 \times 10^{6}} \times 100.213=1.67 \times 10^{-5} \mathrm{rad}$

Maximum deflection and its location:

Maximum deflection occurs where slope is zero i.e. between B \& C.
$\therefore 0=\frac{7.45}{3} x^{2}-193.27-\frac{10}{2}(x-2)^{2}-\frac{8}{6}(x-4)^{3}$

$$
=\frac{7.45}{3} x^{2}-193.27-\frac{10}{2}\left(x^{2}-4 x+4\right)-\frac{8}{6}\left(x^{3}-12 x^{2}+48 x-64\right)
$$

$\therefore \mathrm{x}=5.7 \mathrm{~m}$
$\therefore$ Deflection at $\mathrm{x}=5.7 \mathrm{~m}$

$$
\begin{aligned}
y_{\max } & =\frac{1}{6 \times 10^{6}}\left[\frac{7.45}{6} \times(5.7)^{3}-193.27(5.7)+\frac{10}{6}(3.7)^{3}-\frac{8}{24}(1.7)^{4}\right] \\
& =-1.31 \times 10^{-4} \mathrm{~m} \\
& =-0.13167 \mathrm{~mm}
\end{aligned}
$$

## Q. 6

a. A hollow cylindrical Cl column is 4 m long with both ends fixed, determine the minimum diameter of the column if it has to carry a safe load of $\mathbf{2 5 0} \mathbf{K N}$ with a FOS of 5 . Take internal diameter as 0.8 times the external diameter $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.

Given: Hollow column, $\quad L=4 m=4 \times 10^{3} \mathrm{~mm}$
Both ends fixed, $\quad P_{\text {safe }}=250 \mathrm{KN}=250 \times 10^{3} \mathrm{~N}$

$$
\text { FOS }=5 \quad d_{i}=0.8 d_{0}
$$

$$
\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}
$$

Since, both ends are fixed,

$$
\mathrm{L}_{\mathrm{e}}=\frac{L}{2}=\frac{4 \times 10^{3}}{2}=2 \times 10^{3} \mathrm{~mm}
$$

Now, FOS $=\frac{P_{E}}{P_{\text {safe }}}$

$$
\begin{aligned}
5 & =\frac{P_{E}}{250 \times 10^{3}} \\
P_{E} & =1.25 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

Also, $\mathrm{I}=\frac{\pi}{64}\left[\mathrm{~d}_{0}{ }^{4}-\mathrm{di}^{4}\right]=\frac{\pi}{64}\left[\mathrm{~d}_{0}{ }^{4}-\left(0.8 \mathrm{~d}_{0}\right)^{4}\right]=0.02898 \mathrm{~d}_{0}{ }^{4}$
By Euler's formula,

$$
\mathrm{P}_{\mathrm{E}}=\frac{\pi^{2} E I}{\mathrm{Le}^{2}}
$$

$1.25 \times 10^{6}=\frac{\pi^{2} \times 200 \times 10^{3} \times 0.02898 \mathrm{do}^{4}}{\left(2 \times 10^{3}\right)^{2}}$
$d_{o}=96.69 \mathrm{~mm}$
$d_{i}=0.8 d_{o}=0.8 \times 96.69=77.35 \mathrm{~mm}$
b. A simply supported beam of length 3 m and cross section of $100 \mathrm{~mm} \times 200 \mathrm{~mm}$ carrying a udl of $4 \mathrm{KN} / \mathrm{m}$ neglecting the weight of beam find:

(i) Max, bending stress in the beam.
(ii) Max, shear stress in the beam.
(iii) The shear stress at point 1 m to the right of the left support and $\mathbf{2 5} \mathbf{~ m m}$ below the top surface of the beam.

Given: $L=3 m \quad b=100 \mathrm{~mm} \quad d=200 \mathrm{~mm}$
$\mathrm{w}=4 \mathrm{KN} / \mathrm{m}$
Max. shear force, $S=\frac{w l}{2}=\frac{4 \times 3}{2}=6 \mathrm{KN}$
Max. bending moment, $\mathrm{M}=\frac{w l^{2}}{8}=\frac{4 \times 3^{2}}{8}=4.5 \mathrm{KN} . \mathrm{m}$
$\mathrm{y}=\frac{d}{2}=\frac{200}{2}=100 \mathrm{~mm}$
$I=\frac{b d^{3}}{12}=\frac{100 \times 200^{3}}{12}=66.67 \times 10^{6} \mathrm{~mm}^{4}$
i> Max. bending stress in the beam:

$$
\begin{aligned}
\frac{\sigma_{b}}{y} & =\frac{M}{I} \\
\sigma_{b} & =\frac{M \cdot y}{I}=\frac{4.5 \times 10^{6} \times 100}{66.67 \times 10^{6}}=6.75 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

ii> Max. shear stress:
$\tau_{\max }=1.5 \times \frac{s}{b . d}=1.5 \times \frac{6 \times 10^{3}}{100 \times 200}=0.45 \mathrm{~N} / \mathrm{mm}^{2}$
iii> $\quad$ Shear stresses at a point 1 m to the right of left support and 25 mm below the top surface :
$S_{x x}=6-4 \mathrm{X1}=2 \mathrm{KN}$
$A=100 \times 25=2500 \mathrm{~mm}^{2}$
$\bar{y}=75+\frac{25}{2}=87.5 \mathrm{~mm}$


$$
\begin{aligned}
\tau & =\frac{S_{X X} A \bar{y}}{I . b} \\
& =\frac{2 \times 10^{3} \times 2500 \times 87.5}{66.67 \times 10^{6} \times 100} \\
& =0.066 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

